
Designing Robot Metamorphosis

Anne C. van Rossum ab H. Jaap van den Herik a

a Tilburg Centre for Cognition and Communication, Tilburg University, The Netherlands
b Almende B.V., Rotterdam, The Netherlands

Abstract

In the recent past, modular robot assembly and metamorphosis has been evolved using gene regula-
tory networks. However, until now, no methodology exists to engineer such a regulatory network. Three
existing representations will be employed to describe robot metamorphosis. A graph rewriting grammar
describes state and connectivity transitions between robot organisms at the most abstract level. A commu-
nicating finite state machine introduces messages at an intermediate level. A regulatory network presents
the process of metamorphosis at its least abstract level. In short, we present a design methodology for
metamorphosis for which, as yet, only evolutionary methods did exist.

1 Introduction
Classical artificial intelligence tends to place unbridled emphasis on pattern recognition, keeping pattern
formation on a leash. Patterns are formed in the case of snow flakes, spots on a leopard skin, and bodies
growing from fertilized eggs to adult body forms. The field of artificial morphogenesis studies the develop-
ment of a single (robot) cell toward an artificial organism.

The field of artificial morphogenesis converges upon a technique called indirect encoding to implement
morphogenesis in a decentralized manner. Indirect encoding requires a developmental process from geno-
type to phenotype to grow a structure or topology. It would lead us too far to elaborate on the benefits of
an indirect encoding scheme. We briefly summarize potential advantages: compressibility [7], exploitation
of output geometry [5], robustness against phenotypic “injuries” [11], the ability to encode for phenotypic
plasticity, and allowing for epigenetic factors [13] (the influence of the environment).

Hitherto, indirect encoding schemes have always been evolved. There have been no attempts to create a
genome given an adult body form. We will describe such a reverse path from a dynamic body configuration
toward a set of regulating entities — the genes. If an explicit design trajectory is available, it will be possible
to (1) create benchmarks, (2) compare hand-coded regulatory networks with evolutionary search methods,
and (3) bootstrap evolutionary search.

1.1 Replicator robots
The domain to which we will apply artificial morphogenesis or morphodynamics1 is modular robotics.
Modular robots are able to connect to each other to form large robot organisms. Imagine a bag full of
modular robots, emptied in a collapsed mine. The robots assemble into larger organisms to navigate through
the mine, move obstacles and find survivors. The diversity of challenges that the robots encounter asks for a
diversity of body forms. Robot assembly and metamorphosis is part of a robotic challenge defined in the FP7
project Replicator [8]. In Fig. 1 the scenario is sketched. Different robot morphs are needed to overcome
obstacles or climb on obstacles to obtain energy from power outlets. Our problem statement reads: How to
design a gene regulatory network for metamorphic robots?

1.2 Overview

1The term morphodynamics originates from beach morphodynamics: sediments relentlessly changing sea-floor morphology. Here
it denotes robots that do not just grow towards a static body shape, but that have a dynamic topology.



Figure 1: Left: the first prototype of the Replicator/Symbrion robot as well as a
simulated organism. The robot contains four docking sites. This allows the robots
to create 3D body forms. Right: a scenario for metamorphosis is sketched. A robot
needs to overcome an obstacle by assembling into a certain body form. It subse-
quently needs to morph to another body form to reach a power outlet.

Robot metamorphosis is pre-
sented at the most abstract
level as a reconfiguration
problem in Section 2 to which
effect a graph rewriting gram-
mar is employed. At an in-
termediate level of abstrac-
tion, communication required
to perform reconfiguration is
solidified in Section 3. To
this end communicating finite
state machines are put for-
ward. In Section 4, at the low-
est level of abstraction, the
content of communication is
examined in the form of reg-
ulatory elements and circuits.
Section 5 contains our con-
clusion.

2 Reconfiguration
At the highest level of abstraction, a robot is represented by an undirected graph (Fig. 2). Transitions from
one body form to the next are described in Eq. 1 by a graph rewriting grammar. Graph rewriting grammar
has been used before to describe robot assembly (see Klavins in [9]). Here we (1) describe robot metamor-
phosis, (2) add a connection matrix (Subsection 2.1), and (3) establish additional terminology (Subsection
2.2) for the metamorphic case.

Φ1 =



r0 : b c =⇒ b e

r1 : e e =⇒ e
C00

f

r2 : a f =⇒ f b

r3 : a e =⇒ d b

r4 : b f =⇒ b
C02

b

Φ2 =



u0 : b c =⇒ b e

u1 : e b =⇒ b
C00

b

u2 : a b =⇒ f b

u3 : e f =⇒ d
C02

b

u4 : a d =⇒ d b

(1)

Equation 1 shows two possible sets of rules to transition from the H-form of Fig. 2 to the snake form:
Φ1 and Φ2. The rule sets are different, but lead to an equivalent result in the form of the snake. The rules
are executed in a random order and possibly in parallel. Each label a through f stands for a robot module
in a certain state. The grammar rules have a right-hand and a left-hand side. Both hands are limited to two
robots to enforce pair-wise interactions. With a maximum of two elements per side, no coordination among
three or more robot modules is needed to reorganize the robot topology. In other words, the reconfiguration
problem can be solved locally.

Rule r0 in Eq. 1 has a left-hand side which represents a module b connected to a module c. The execution
of this rule causes those pairs to disconnect (no line is drawn at the right-hand side) and transforms c into
e. This will not be a physical change, but a state change2. Starting with the H-topology in Fig. 2, the rule
results in a collection of b − b − b − b and a − e chains, as well as intermediate forms derived from the
original H-topology. In explicit terms, with this one rule, r0, we can remove all the a − c “legs” from the
H-topology. Contrary to rule r0, the rule r1 in Eq. 1 has no line drawn at the left-hand side of the rule: e e.
Here we note in anticipation of Section 3 that such a rule involves wireless communication before a physical
connection is made. Moreover, rule r1 introduces an indeterministic element. One of the modules in state e
turns into an f while the other remains the same. Using this feature, directionality can be introduced to the
a− e− f − a chains (the f “moves” to the extremity and binds to the b− b− b− b chain).

2Observe that a state can also be used functionally. Modules in state b can have a different set of sensors turned on and off compared
to modules in state a. For example, only the modules d in the snake in Fig. 2 might have their camera turned on.



d b b b b b b b b b b d

a c b c a

a c b c a

b

b

Figure 2: An H-shaped and a snake-like robot topology. Each robot is represented by a vertex with a maximum of four
outgoing edges. Each edge corresponds to a connection. Labels on each vertex represent internal states. Graph rewriting
rules define state transitions. The transition from the H-shaped topology to the snake topology is described by a set of
graph rewriting rules.

2.1 Connection matrix
The ordinary graph grammar [9] is extended with an additional connection matrix. According to rule r1,
the connection matrix C (see [4]) defines how e and f are connected. There is only one connection possible
between two modules,

∑3,3
side=(i,j)=0,0 Ci,j = 1, so we can represent this single connection by its row and

column index Cij . The matrix C00 means that both modules connect to each other with their locally defined
coordinate system (for instance, both to the “north” side, from the four cardinal directions). Further details
on matrix representations of robot configurations can be found in [4].

2.2 Reciprocity
In Eq. 2 a “reciprocal” set of both instances Φ1 and Φ2, called Υ1, is described. This is the reverse transition
from the snake to the H-figure in Fig. 2.

Υ1 =



s0 : b d =⇒ a c

s1 : a b =⇒ a e

s2 : b e =⇒ f e

s3 : b f =⇒ g e

s4 : e e =⇒ a c

s5 : g c =⇒ g
C10

c

s6 : g c =⇒ b
C30

c

(2)

A reciprocal metamorphic pair obeys C = CΦΥ. The consecutive execution of Φ and Υ results in the
same robot body form C.3 The reciprocal set Υ1 describes the transition from the snake form to the H-form.
A robot that has the ability to morph from one form to the other needs to have (equivalents of) both sets in
its repertoire. We note that the mere combination of Φ1 or Φ2 with Υ1 will not necessarily lead to a stable
outcome. The population of robots will also consist of all intermediate forms of robots.

It is possible to prevent the proliferation of intermediate body forms by introducing the concept of a dual
rule. On inspection of Φ1 and Υ1 a dual rule can be found: the left-hand side of r0 is equal to the right-hand
side of s6. In Fig. 2 rule r0 corresponds to the removal of the a− c legs from the H-figure, while the s6 rule
causes them to attach to the (shortened) snake body. The uncontrolled case executes all rules in Φ and Υ
randomly. To reach a desired body shape, the dual rules need not to be executed by chance, but by external
control. Control overhead can be reduced by designing such a rule set such that only one dual rule exist.

3This can be seen by performing the graph rewriting rules. A general proof of this property might be an interesting follow-up study.



3 Communication
At an intermediate level of abstraction we specify how to represent communication between robot modules.
Biological cell communication can be seen, admittedly caricatured, as the exchange of protein vectors over
time. Evolving an efficient communication scheme between entities is called language grounding [12].
In other words, inter-cell communication can be described as cellular language grounding. We represent
the cell’s interactions in the form of a communication finite state machine in Subsection 3.1. Moreover, a
distinction is made between wired and wireless messages in Subsection 3.2 to be able to deduct the required
number of message types from such a communicating state machine.

3.1 Communicating finite state machines
Each robot module can be represented by a finite state machine (FSM). Interactions between FSMs can be
modeled by a communicating finite state machine [3]. The edges in a communicating FSM carry labels and,
like in ordinary FSMs, denote state transitions. An edge can only be traversed when two communicating
FSMs are in a synchronized state. Synchronization is defined by one FSM being in a state preceding an
edge with label ri!, while the other is in a state with an outgoing edge labeled ri?. The ri label stands for a
communication channel. As soon as the FSM writes on ri!, the other FSM reads on ri? and both undergo a
transition to the next state. We introduce here the communicating FSM approach to model communication
between robot modules.

b e c

f a d

r0?

r1?r2?/r4?

r3?

r0!/r4! r1!

r2! r3!

Figure 3: A communicating Finite State Machine (FSM)
representation can be used to represent Φ1. Each robot mod-
ule contains a communicating FSM (so there are Z FSMs in
total).

In Fig. 4 the ri labels correspond to the rule
index in Φ1. The !-tokens indicate modules that
broadcast the message ri. The ?-tokens are robot
modules that are listening to a certain message ri.
(A robot module cannot receive its own message.)
For instance, a robot in state a broadcasts message
r3! (see Φ1 in Eq. 1). Another robot in state e re-
ceives this message. Subsequently robot a switches
to d and e switches to b (see again Eq. 1). Ob-
serve that a module in state a can actually send a
composed message [r2, r3]. This message can have
two mutually exclusive effects. A module in state f
might change to b, or a module in e might change
to b (this corresponds to rule r2 and r3 in Φ1).

3.2 Wired and wireless communication
Figure 3 simplifies matters too much for a decision to be made on how many message types are required
between communicating machines. First of all, a module in state a needs to send a composed message
[r2, r3]. But, more importantly, the module in state b has to send a wired message r0 in its connected b′ state,
and a wireless message r4 in its disconnected b state (see Fig. 4).

b e′ e c′

f b′ f ′ a′ d

r0?

r1?

r2?

r3?

r4?

r0!

r4!

r1!

r2! r3!

Figure 4: A communicating FSM with a distinction between modules in disconnected states s ∈ S and connected states
s′ ∈ S. The number of messages needed to implement this scheme corresponds to the number of vertices with outgoing
edges with !-tokens.

The number of messages required to implement the rewriting scheme Φ1 corresponds to the number of
vertices with outgoing edges with !-labels in Fig. 4. In this particular example, the vertex set is (a′, b, b′, e),
so four messages are sufficient to implement the given instance of metamorphosis.



4 Regulation
This section describes the metamorphic process at the least abstract level: the regulatory network descrip-
tion. Regulatory networks have been used before for robot assembly in the form of gene regulatory networks
[2]. We elaborate on this work by (1) introducing an abstract representation of a regulatory network in
Subsection 4.1 and 4.2, (2) making explicit the relation with communicating FSMs by coupled regulatory
networks in Subsection 4.3, and (3) opening up the possibility to design rather than evolve such a regulatory
network by introducing two elementary entities (a) A NAND port, (b) a flip-flop in Subsection 4.4. Using
those entities a regulatory network can be constructed that corresponds to the rule sets in Section 2. Due to its
central role of being able to implement an indeterministic rule, a flip-flop is implemented in Subsection 4.5.

4.1 Regulatory network
For an introduction to gene regulatory networks, see [2]. Here we will briefly recapitulate its properties. A
regulatory network is a tuple {G,P}. It consists out of a set of regulatory entities (g0, . . . , gL) ∈ G, and a
set of regulated elements, artificial proteins, (p0, . . . , pM ) ∈ P with pi ∈ R≥0. The proteins are updated
asynchronously according to Eq. 3. We will use the shorthand pi to indicate p[t]i and p̃i for p[t+ ∆t]i (with
varying ∆t). {G,P} can be depicted as a graph, with P as the vertices and G denoting the edges.

U(~gij) : p̃i = Θ(pi − κ+
∑
j∈Ni

Ψij) with Ψij =


γij if αij < pj < βij

−γij if βij < pj < αij

0 else

(3)

The regulatory update rule U for a probabilistic chosen entity ~gij describes the ingoing edges from the
vertices pj in neighborhood Ni to vertex pi. To calculate the new quantity of p̃i a non-linearity Ψij is
used. The edge ~gij is not a scalar, but a vector [αij , βij , γij ], with αij , βij , γij ∈ R≥0. The protein pj
can either up-regulate or down-regulate pi. If αij < βij the protein pi is up-regulated, if αij > βij it is
down-regulated. The rate of regulation is defined by γij . If the regulating entity does not fall in between the
limits defined by αij and βij nothing happens. That is, the protein pi is only decayed with a rate defined by
κ. The proteins are capped by a sigmoid function, Θ(x) which enforces the protein quantity to be between
θmin and θmax.

4.2 Types of regulators
We simplify the regulatory network by only admitting “low-pass” (p < α) and “high-pass” (p > α) protein
quantity filters, rather than the “band-pass” filters in Ψij in Eq. 3.

Ψij =


γijεij

1− δij
2

if pj > αij

γijεij
1 + δij

2
if pj < αij

0 else

(4)

Equation 4 only needs one threshold parameter, αij . The change in regulated protein is defined by
γ ∈ R>0. There are four flavors of regulator types. The low-pass filter is defined by δij = 1, which
returns a positive result for pj < αij . The high-pass filter is defined by δij = −1. Both filters can either
increase or decrease the target product pi. This is defined by εij ∈ {1,−1}. Let us introduce the following
notation for the regulating entities: R+γ

>α is turned on at low protein quantities and is driving its target up
(δij = εij = 1); R−γ>α is turned on likewise, but inhibits its target (δij = −εij = 1); R+γ

⊥α is turned on at high
protein quantities and is driving its target up (δij = −εij = −1); R−γ⊥α is turned on likewise and inhibits its
target (δij = εij = −1).

4.3 Coupled regulatory networks
The regulatory network abstraction allows us to describe one robot module. Now we will need to describe
inter-module communication as explicated in Section 3. If each robot module is a dynamic system, this
problem can be formulated as a synchronization problem for coupled extended dynamical systems [15]. The
representation in Fig. 5 is different from coupled random boolean networks or Kauffman networks by the



following five properties. (1) A node represents a protein pi, an edge represents a gene (rather than a node
representing a gene). (2) More than two states (or spins) per node. (3) A neighbor graph Ni per node, rather
than fixing the number of neighbors to R for each node. (4) Incremental cross-coupling between networks
(∆pi(M1) = c(pi(M2)) rather than pi(M1) = pi(M2) with Mi a network, and c a coupling function). (5)
An asynchronous updating rule for the edges.

e′

b′

q′

r2!

r3!

r4!

r1!

r0!

r0?

r1?

r2?

r3?

r4?

R+
⊥

R+
⊥

R−⊥

R+
⊥

R−⊥

R+
⊥

R+
⊥

Figure 5: A regulating network corresponding to r3. Two
robot modules communicate with each other. The module
on the left emits a signal belonging to state e. It is received
by the module sketched on the right, which responds by
sending a composed message [r2, r3]. From the picture it
can be seen that this message will activate q′, which will de-
activate e′. The deactivation of e′ has a dual effect. First the
outgoing message r1! is prevented, and next the inhibition
of b by e′ stops. Together with the excitation from q′ itself,
b′ will be activated, and when b′ is activated it starts sending
r0!.

The rational behind the listed properties is as
follows. (1) Cells communicate by protein vectors.
We are interested in protein quantities rather than in
gene activity. (2) Protein quantities are real-valued,
not binary. (3) A regulatory network needs to be
designed and enforcing the same number of genes
between two proteins introduces an unnecessary de-
sign constraint. (4) The same regulatory network
exists in each robot module. If protein quantities are
set to the same value in both modules, synchroniza-
tion occurs and all robot modules will converge to
the same state. Hence, the coupling is incremental
(the protein quantity is increased or decreased) and
cross-coupled (rx! in robot i influences rx? in robot
j). (5) A synchronous updating rule — a global
clock — seems to be biased to create rhythmic pat-
terns [6] and such a bias we want to avoid.

Fig. 5 shows the representation of the rule r3
from Eq. 1. To substantiate our case that it is possi-
ble to represent all rules with a regulating network,
we present building blocks in the next subsection.

4.4 Network motifs
In [1] several network motifs are described, such as
negative auto-regulation, positive auto-regulation,
feed-forward loops and single-input modules. Here we will introduce two “network motifs” originating
from digital circuit logic. (1) A logical NAND port and (2) a flip-flop. Those elements are created by the
R+
>, R+

⊥, R−> and R−⊥ regulators from Subsection 4.2.
First, we show that it is possible to implement a logical NAND port. A NAND port, also called the

Sheffer stroke, is functionally complete and can be used to constitute a logical formal system. In other
words, all the other boolean gates can be created by a concatenation of NAND operations.

q′ r2?

r3?

R+1
>40

R+1
>40

Figure 6: A NAND gate created by reg-
ulating network. Observe that it is es-
sential that there is decay in the system.
When r2? and r3? are both above a prede-
fined threshold (here α = 40 on a scale of
θmax = 100) both edges will be disabled.
Now q′ will decay with a rate defined by
κ in Eq. 3.

In Fig. 6 a NAND port is visualized. Likewise, we can for ex-
ample create a logical AND port can be created by the combination
of an R+2

⊥80 edge, and an R−2>80 edge. Only when both quantities are
above an upper threshold (α = 80) the dis-inhibition of the latter
edge stops.

Second, we describe the flip-flop. The flip-flop is a bistable cir-
cuit with two states and a switching mechanism. It stores one bit
of memory. A rule like r1 in Eq. 1 requires such a bistable circuit.
As stated before, this rule is indeterministic and can either cause
a transition of e toward e′ or respectively toward f ′. Moreover,
the flip-flop deserves some emphasis because bistable mechanisms
might very well be involved in (robot) cell differentiation [10].

The flip-flop in Fig. 7 implements rule r1 in Φ1 (see Eq. 1).
Exactly the same regulatory network exist on both robot modules
(left and right). By asynchronous updating, it happens that either
the left or the right module will increase protein x beyond its threshold (α = 80 on a θmax = 100). As soon
as this takes place, one of the inhibiting connections between xi and xj becomes active. Then the number
of proteins of its “competitor” will be reduced. Although in the beginning the winners might alternate, in
the end — if γ is large enough in R−γ⊥ε — there will be a single winner.



ei

f ′i

e′i

xi xj f ′j

ej

e′j

R−3⊥80

R−3⊥80

R+2
⊥80

R+2
>20

R+2
⊥80

R+2
⊥80

R+2
>20

R+2
⊥80

Figure 7: A flip-flop is defined across two robot modules, denoted by i (left) and j (right). Rule r1 in Φ1 (see Eq. 1)
transitions to either e′ or f ′.

4.5 Bistable Circuit Implementation
We would like to reinstate that our main goal is a design methodology for metamorphosis. However, due
to its pivotal role in the describe a graph rewriting rule set as Φ1 in the form of a regulatory network, the
bistable circuit is implemented. It allows describing indeterministic rules like r1 ∈ Φ1 (in Eq. 1). Fig. 8
shows the results of a run with a C implementation of the flip-flop as defined in Fig. 7.

Figure 8: A run of the bistable circuit with parameters set as in Fig. 7. Time is on the horizontal axis, protein quantities
on the vertical axis. Edges (with decay as self-inhibiting edge R−1

⊥0) are randomly chosen. Bistable behaviour emerges:
a high concentration x0 and a low concentration x1.

The existence of network motifs like the logical NAND port and the bistable circuit allows us to design
a regulatory circuit corresponding to the metamorphic rule sets defined in Section 2.

5 Conclusion
The design trajectory is described step-by-step. To understand a regulatory network for metamorphosis three
levels of abstraction are discussed. It starts at the most abstract level with a graph rewriting grammar. At an
intermediate level, it continues with a communicating finite state machine description. At the lowest level
of abstraction, a regulatory network implements the state transitions on each robot module by (mutually
interacting) artificial proteins.

As stated in the introduction, a top-down, formal, and explicit representation provides clear benefits over
yet another ad-hoc evolutionary technique, most of all, it allows for benchmarking. In future research, the
top-down approach will be compared with, among others, evolved robotic metamorphic gliders [14].



Acknowledgments
The authors would like to thank the anonymous referees for their constructive comments. The “REPLI-
CATOR” project is funded by the European Commission within the work programme “Cognitive Systems,
Interaction, Robotics” under grant no. 216240.

References
[1] U. Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6):450–

461, 2007.

[2] J.C. Bongard. Evolving modular genetic regulatory networks. In Proceedings of the 2002 congress on
evolutionary computation, pages 17–21. Citeseer, 2002.

[3] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM (JACM),
30(2):342, 1983.

[4] A. Castano and P. Will. Representing and discovering the configuration of conro robots. In IEEE
International Conference on Robotics and Automation, volume 4, pages 3503–3509. IEEE; 1999, 2001.

[5] D.B. D’Ambrosio and K.O. Stanley. A novel generative encoding for exploiting neural network sen-
sor and output geometry. In Proceedings of the 9th annual conference on Genetic and evolutionary
computation, page 981. ACM, 2007.

[6] E.A. Di Paolo. Rhythmic and non-rhythmic attractors in asynchronous random boolean networks.
BioSystems, 59(3):185–195, 2001.

[7] S. Harding and J.F. Miller. The dead state: A comparison between developmental and direct encod-
ings. In Proc. GECCO Workshop on Complexity Through Development and Self-Organizing Repre-
sentations, 2006.

[8] S. Kernbach, H. Hamann, J. Stradner, R. Thenius, T. Schmickl, A. C. van Rossum, M. Sebag, N. Bre-
deche, Y. Yao, G. Baele, Y. Van de Peer, J. Timmis, M. Mohktar, A. Tyrrell, A. E. Eiben, S. P. McKib-
bin, W. Liu, and A. F. T. Winfield. On adaptive self-organization in artificial robot organisms. In Proc.
of the First IEEE International Conference on Adaptive and Self-adaptive Systems and Applications
(IEEE ADAPTIVE 2009), Athens/Glyfada, Greece, 2009.

[9] E. Klavins. Directed self-assembly using graph grammars. Foundations of nanoscience: self assembled
architectures and devices, Snowbird, UT, 2004.

[10] A.S. Ribeiro and S.A. Kauffman. Noisy attractors and ergodic sets in models of gene regulatory
networks. Journal of theoretical biology, 247(4):743–755, 2007.

[11] D. Roggen and D. Federici. Multi-cellular development: is there scalability and robustness to gain? In
Parallel Problem Solving from Nature-PPSN VIII, pages 391–400. Springer, 2004.

[12] L. Steels and P. Vogt. Grounding adaptive language games in robotic agents. In Proceedings of the
fourth european conference on artificial life, pages 474–482. The MIT Press, 1997.

[13] S.E. Sultan. Plant developmental responses to the environment: eco-devo insights. Current Opinion in
Plant Biology, 2009.

[14] A.C. van Rossum. Robot metamorphosis: How to build a glider with a genetic regulatory network. In
Proceedings of Seventh International Conference on Swarm Intelligence, Brussels, 2010. submitted.

[15] D.H. Zanette and L.G. Morelli. Synchronization of coupled extended dynamical systems: a short
review. International Journal of Bifurcation and Chaos, 13(4):781–796, 2003.


